E2.5 Signals & Linear Systems

Tutorial Sheet 9 – Discrete System Analysis

(Lectures 16 & 17)

1.* Using only the fact that $\gamma^k u[k] \Leftrightarrow \frac{z}{z-\gamma}$ and properties of the z-transform, find the z-transform of:

- a) $k^2 \gamma^k u[k]$
- b) $n^{3}u[n]$

c)
$$a^k \left\{ u[k] - u[k-m] \right\}$$

2.** By applying the time-shift property of z-transform, find the z-transform of the signal x[n] as shown in Fig. Q2. Hint: $x[n] = n\{u[n] - u[n-6]\}$.

3.* Show a canonical realization of the following transfer functions:

a)
$$H[z] = \frac{z(3z-1.8)}{z^2 - z + 0.16}$$

b)
$$H[z] = \frac{3.8z - 1.1}{(z - 0.2)(z^2 - 0.6z + 0.25)}$$

4.** Draw a diagram showing the realization of a digital system whose transfer function is given by:

$$H[z] = \sum_{k=0}^{6} k z^{-k}$$

5.* Derive the amplitude and phase response of the digital filters shown in Fig.Q5(a) and (b).

Fig. Q5

6.** a) Realize a digital filter whose transfer function is give by

$$H[z] = K \frac{z+1}{z-a}.$$

- b) Choose a value of K such that H[1] = 1. The amplitude response has a maximum value of $\Omega = 0$, and it decreases monotonically with frequency until $\Omega = \pi$. The 3-dB bandwidth is the frequency where the amplitude response drops to 0.707. Determine the 3-dB bandwidth of this filter when a = 0.2.
- 7.** Pole-zero configurations of two filters are shown in Fig. Q7(a) and (b). Sketch roughly the amplitude and the phase responses of these filters.

Fig. Q7

- 8.** Design a digital notch filter to reject frequency 5000 Hz completely, and to have a sharp recovery on either sides of 5000 Hz to a gain of unity. Assume that the sampling frequency is 40 kHz.
- 9.*** a) Show that the amplitude response of a system with a pole at z = r and a zero at z = 1/r (r is less than or equal to 1) is constant with frequency (this is called an "allpass" filter).
 - b) Generalize the result from a) to show that a digital LTI system with two poles at $z = re^{\pm j\theta}$ and two zeros at $z = \frac{1}{r}e^{\pm j\theta}$ $(r \le 1)$ is also an allpass filter.